Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38674510

RESUMO

Weed interference consistently poses a significant agronomic challenge in cotton production, leading to unfavorable direct and indirect consequences. Consequently, the predominant strategy employed to manage weeds is the application of synthetic herbicides. However, this extensive reliance has resulted in the development of herbicide-resistant weed populations due to the prolonged use of a single herbicide and the lack of rotation. This project focused on identifying weed-suppressive cotton chromosome substitution (CS) lines. These CS lines closely resemble the parent TM-1, an upland cotton derivative (Gossypium hirsutum). Each CS line carries a single chromosome or chromosome arm exchanged from G. barbadense, G. tomentosum, or G. mustelinum within the TM-1 background. In a greenhouse experiment utilizing a stepwise approach, five CS lines, along with two conventional varieties (Enlist and UA48) and the parent line (TM1), were assessed to determine their potential for suppressing Palmer amaranth growth. The plant height was measured 7, 14, and 21 days after establishment, and the chlorophyll content was measured 21 days after establishment. The results revealed varying levels of chlorophyll reduction in Palmer amaranth, with the Enlist variety displaying the lowest reduction (32%) and TM-1 exhibiting the highest (78%). Within 14 days of establishment, the CS lines T26lo, BNTN 1-15, and T11sh demonstrated substantial suppression of Palmer amaranth height, with reductions of 79, 70, and 71%, respectively. Conversely, Enlist displayed the least effective performance among the CS lines. Moreover, CS22, CS49, CS50, CS34, UA48, and CS23 displayed a decreasing trend in reducing Palmer amaranth height from 14 to 21 days after establishment. This research demonstrates the inherent herbicidal attributes within cotton CS lines against Palmer amaranth. In light of the versatile applications of cotton fibers and the unique characteristics of the G. hirsutum genome, this study investigates the potential of specific cotton lines in enhancing weed management practices. By elucidating the implications of our findings, we aim to contribute to promoting sustainability and developing alternatives to synthetic herbicides in agricultural systems.

2.
Front Plant Sci ; 14: 1123631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645459

RESUMO

Legumes are extremely valuable because of their high protein content and several other nutritional components. The major challenge lies in maintaining the quantity and quality of protein and other nutritional compounds in view of climate change conditions. The global need for plant-based proteins has increased the demand for seeds with a high protein content that includes essential amino acids. Genome-wide association studies (GWAS) have evolved as a standard approach in agricultural genetics for examining such intricate characters. Recent development in machine learning methods shows promising applications for dimensionality reduction, which is a major challenge in GWAS. With the advancement in biotechnology, sequencing, and bioinformatics tools, estimation of linkage disequilibrium (LD) based associations between a genome-wide collection of single-nucleotide polymorphisms (SNPs) and desired phenotypic traits has become accessible. The markers from GWAS could be utilized for genomic selection (GS) to predict superior lines by calculating genomic estimated breeding values (GEBVs). For prediction accuracy, an assortment of statistical models could be utilized, such as ridge regression best linear unbiased prediction (rrBLUP), genomic best linear unbiased predictor (gBLUP), Bayesian, and random forest (RF). Both naturally diverse germplasm panels and family-based breeding populations can be used for association mapping based on the nature of the breeding system (inbred or outbred) in the plant species. MAGIC, MCILs, RIAILs, NAM, and ROAM are being used for association mapping in several crops. Several modifications of NAM, such as doubled haploid NAM (DH-NAM), backcross NAM (BC-NAM), and advanced backcross NAM (AB-NAM), have also been used in crops like rice, wheat, maize, barley mustard, etc. for reliable marker-trait associations (MTAs), phenotyping accuracy is equally important as genotyping. Highthroughput genotyping, phenomics, and computational techniques have advanced during the past few years, making it possible to explore such enormous datasets. Each population has unique virtues and flaws at the genomics and phenomics levels, which will be covered in more detail in this review study. The current investigation includes utilizing elite breeding lines as association mapping population, optimizing the choice of GWAS selection, population size, and hurdles in phenotyping, and statistical methods which will analyze competitive traits in legume breeding.

3.
Sci Rep ; 13(1): 775, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641537

RESUMO

In this study, aqueous spinach extract was used for the green synthesis of iron nanoparticles. The surface of iron oxide nanoparticles was coated with spermine. The physicochemical properties of nanoparticles were investigated using UV-Vis, TGA, FTIR, VSM, TEM, and DLS. The results showed that the nanoparticles had a spherical structure. The surface charge of the Fe3O4-NPs increased from -3.2 to 18.42 (mV) after Fe3O4 coating by spermine. In order to investigate the effect of nanoparticles on physicochemical properties of rosemary under drought stress conditions, an experiment was carried out in a completely randomized design. The results showed that the amount of antioxidant enzymes and secondary metabolites increased significantly under drought stress. Moreover, the use of spermine-coated iron nanoparticles can be useful in increasing resistance to drought stress in plants by increasing the activity of some antioxidant enzymes and secondary metabolites. The biocompatibility of Nanoparticles in cell suspension was investigated. the ability of Fe3O4-SM NPs to interact with DNA and protect it against DNaseI and ultrasonic waves using agarose gel electrophoresis was studied. The ability of Fe3O4-SM to neutralize the negative charge of DNA and protect it against DNaseΙ and ultrasonic waves was confirmed using an agarose gel electrophoresis assay.


Assuntos
Nanopartículas , Rosmarinus , Ferro , Espermina , Antioxidantes
4.
Curr Issues Mol Biol ; 44(11): 5440-5473, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36354681

RESUMO

Biomass yield and quality are the primary targets in forage crop improvement programs worldwide. Low-quality fodder reduces the quality of dairy products and affects cattle's health. In multipurpose crops, such as maize, sorghum, cowpea, alfalfa, and oat, a plethora of morphological and biochemical/nutritional quality studies have been conducted. However, the overall growth in fodder quality improvement is not on par with cereals or major food crops. The use of advanced technologies, such as multi-omics, has increased crop improvement programs manyfold. Traits such as stay-green, the number of tillers per plant, total biomass, and tolerance to biotic and/or abiotic stresses can be targeted in fodder crop improvement programs. Omic technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, provide an efficient way to develop better cultivars. There is an abundance of scope for fodder quality improvement by improving the forage nutrition quality, edible quality, and digestibility. The present review includes a brief description of the established omics technologies for five major fodder crops, i.e., sorghum, cowpea, maize, oats, and alfalfa. Additionally, current improvements and future perspectives have been highlighted.

5.
Front Plant Sci ; 13: 910369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072333

RESUMO

The cotton chromosome substitution line, CS-B15sh, exhibits 41% lower injury from 2,4-D when applied at the field recommended rate of 1.12 kg ae ha-1 (1×) than does Texas Marker-1 (TM-1). CS-B15sh was developed in the genetic background of Gossypium hirsutum L. cv TM-1 and has chromosome introgression on the short arm of chromosome 15 from Gossypium barbadense L. cv. Pima 379. In a previous experiment, we observed reduced translocation of [14C]2,4-D outside the treated leaf tissue in CS-B15sh, which contrasted with an increased translocation of the herbicide in the tissues above and below the treated leaf in TM-1. Our results indicate a potential 2,4-D tolerance mechanism in CS-B15sh involving altered movement of 2,4-D. Here, we used RNA sequencing (RNA-seq) to determine the differential expression of genes between 2,4-D-challenged and control plants of the tolerant (CS-B15sh) and susceptible lines (TM-1 and Pima 379). Several components of the 2,4-D/auxin-response pathway-including ubiquitin E3 ligase, PB1|AUX/IAA, ARF transcription factors, and F-box proteins of the SCFTIR1/AFB complex-were upregulated with at least threefold higher expression in TM-1 compared with CS-B15sh, while both Pima 379 and TM-1 showed the same fold change expression for PB1|AUX/IAA mRNA. Some genes associated with herbicide metabolism, including flavin monooxygenase (Gohir.A01G174100) and FAD-linked oxidase (Gohir.D06G002600), exhibited at least a twofold increase in CS-B15sh than in TM-1 (the gene was not expressed in Pima 379), suggesting a potential relationship between the gene's expression and 2,4-D tolerance. It is interesting to note that glutathione S-transferase was differentially expressed in both CS-B15sh and Pima 379 but not in TM-1, while cytochrome P450 and other genes involved in the oxidation-reduction process were significantly expressed only in CS-B15sh in response to 2,4-D. Gene set enrichment analysis on the union DEGs of the three cotton genotypes revealed the depletion of transcripts involved in photosynthesis and enrichment of transcripts involved in ABA response and signaling.

6.
Toxics ; 10(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35736928

RESUMO

Frequent use of herbicides may impose a risk on non-target species. The objective was to test the combined toxic effect of binary herbicide mixtures­metribuzin:halosulfuron and metribuzin:flumioxazin­on non-target earthworms in two test systems: filter paper and a soil toxicity test system. The joint action experiments were independently run twice to substantiate the findings. The most potent individual herbicide was metribuzin, with a 50% lethal concentration (LC50) of 17.17 µg ai. cm−2 at 48 h in the filter paper test. The toxicity of the individual herbicides on the filter paper test was ranked as metribuzin>halosulfuron>flumioxazin. In the soil test, metribuzin and halosulfuron had high toxicity with an LC50 of 8.48 and 10.08 mg ai. kg−1, respectively, on day 14. Thus, the individual herbicide ranking did not change between the filter paper and artificial soil tests. The herbicide's mixed effect in both test systems showed a consistent antagonistic effect relative to a Concentration Addition reference model. It indicates that the mixtures retracted the herbicide's action in the earthworms.

7.
Plants (Basel) ; 11(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35161392

RESUMO

Weed-suppressive crop cultivars are a potentially attractive option in weed management strategies (IWM). A greenhouse study was conducted at the R. R. Foil Plant Science Research Center, Starkville, MS, to assess the potential weed-suppressive ability of 17 tomato cultivars against Palmer amaranth (Amaranthus palmeri S. Wats), yellow nutsedge (Cyperus esculentus L.), and large crabgrass (Digitaria sanguinalis L.). The experiment was a completely randomized design, with four replications, and was repeated twice. The height, chlorophyll, and dry weight biomass of the weeds were measured 28 days after sowing. Weed suppression varied greatly among tomato cultivars. The most significant effect of tomato interference was recorded on Palmer amaranth, and the least reduction was observed with yellow nutsedge plants. Cultivars 15 and 41 reduced Palmer amaranth height and biomass by about 45 and 80%, respectively, while cultivar 38 reduced 60% of the chlorophyll percentage. Large crabgrass plants were 35% shorter in the presence of cultivar 38 and had a biomass reduction of 35% in the presence of cultivar 38. Under tomato interference, a minimal effect was observed in chlorophyll, height, and biomass of yellow nutsedge seedlings. Factoring all parameters evaluated, cultivars 38 and 33 were most suppressive against Palmer amaranth and large crabgrass.

8.
Plants (Basel) ; 10(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34834813

RESUMO

Palmer amaranth is a problematic common weed species, especially in cotton. With the wide use of chemical herbicide and herbicide-tolerant transgenic cotton lines, Palmer amaranth populations have developed tolerance to commonly used herbicides. It is imperative to develop alternative weed control methods to slow the evolution of herbicide-resistant weed populations and provide new strategies for weed management. Eleven chromosome substitution (CS) cotton lines (CS-B26lo, CS-T17, CS-B16-15, CS-B17-11, CS-B12, CS-T05sh, CS-T26lo, CS-T11sh, CS-M11sh, CS-B22sh, and CS-B22lo) were screened for weed-suppressing abilities in this study. The cotton lines were tested using the established stair-step assay. Height (cm) and chlorophyll concentration (cci) were measured for each plant in the system. The most significant variation in Palmer amaranth height reduction among the CS lines was observed 21 days after establishment. CS-B22sh (76.82%) and T26lo (68.32%) were most effective in reducing Palmer amaranth height. The cluster analysis revealed that CS-B22sh, and CS-T26lo were clustered in one group, suggesting similar genetic potential with reference to Palmer amaranth growth and development. CS-B22sh showed novel genetic potential to control the growth and development of Palmer amaranth, a problematic weed in cotton fields. Future experimentation should implement more parameters and chemical testing to explore allelopathic interactions among CS lines and Palmer amaranth.

9.
Pest Manag Sci ; 77(9): 4016-4025, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33896105

RESUMO

BACKGROUND: In subtropical areas, early planting exposes rice seedlings to cold stress, impairing seedling growth and making them more vulnerable to other stresses including herbicide injury. The objectives of this work were: to evaluate the effect of cold stress on bispyribac-sodium selectivity in rice; to determine the mechanisms of cold tolerance in sensitive ('Epagri 109') and tolerant ('IRGA 424') rice cultivars; and to ascertain that cold acclimatization influences bispyribac-sodium selectivity in rice. RESULTS: Prolonged cold stress caused high lipid peroxidation, increased rice injury, and stunted growth. Short-term acclimation with cold stress reduced rice injury with bispyribac-sodium. Total phenols were upregulated in rice exposed to cold stress. Prolonged cold stress increased the superoxide dismutase and catalase activity in IRGA 424. Antioxidant activity was higher in the cold-tolerant than in the cold-sensitive cultivar. Only catalase activity was responsive to bispyribac-sodium. OsRAN2, OsGSTL2, and CYP72A21 were upregulated by cold and herbicide stress in both cultivars. OsGSTL2 was upregulated more in IRGA 424 than in Epagri 109. OsFAD8 was upregulated in cold-sensitive rice exposed to short-duration cold stress but was not responsive to bispyribac-sodium. CONCLUSION: Cold stress reduces bispyribac-sodium selectivity in rice. Short-term acclimation to cold stress reduces the effect of cold stress and enhances bispyribac-sodium selectivity. The tolerance of rice (IRGA 424) to cold stress is due to differential induction of protection genes CYP72A21 and OsGSTL2 associated with herbicide metabolism, together with the accumulation of total phenols and higher activity of antioxidant enzymes.


Assuntos
Oryza , Aclimatação , Benzoatos , Temperatura Baixa , Resposta ao Choque Frio , Pirimidinas , Plântula/genética , Temperatura
10.
Front Plant Sci ; 12: 593037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584767

RESUMO

Amaranthus retroflexus L. and Chenopodium album L. are noxious weeds that have a cosmopolitan distribution. These species successfully invade and are adapted to a wide variety of diverse climates. In this paper, we evaluated the morphology and biochemistry of 16 populations of A. retroflexus L. and 17 populations of C. album L. Seeds from populations collected from Spain, France, and Iran were grown together at the experimental field of the agriculture research of University of Mohaghegh Ardabili, and a suite of morphological traits and biochemical traits were assessed. Among the populations of A. retroflexus L. and of C. album L. were observed significant differences for all the measured traits. The number of branches (BN) for A. retroflexus L. (12.22) and inflorescence length (FL; 14.34) for C. album L. were the two characteristics that exhibited the maximum coefficient of variation. Principal component analysis of these data identified four principal components for each species that explained 83.54 (A. retroflexus L.) and 88.98 (C. album L.) of the total variation. A dendrogram based on unweighted neighbor-joining method clustered all the A. retroflexus L. and C. album L. into two main clusters and four sub-clusters. Canonical correlation analysis (CCA) was used to evaluate relationships between climate classification of origin and traits. Similarly, the measured characteristics did not group along Köppen climate classification. Both analyses support the conclusion that A. retroflexus L. and C. album L. exhibit high levels of diversity despite similar environmental histories. Both species also exhibit a high diversity of the measured biochemical compounds indicating that they exhibit different metabolic profiles even when grown concurrently and sympatrically. Several of the biochemical constituents identified in our study could serve as effective indices for indirect selection of stresses resistance/tolerance of A. retroflexus L. and C. album L. The diversity of the morphological and biochemical traits observed among these populations illustrates how the unique selection pressures faced by each population can alter the biology of these plants. This understanding provides new insights to how these invasive plant species successfully colonize diverse ecosystems and suggests methods for their management under novel and changing environmental conditions.

11.
J Vis Exp ; (155)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32065172

RESUMO

Weed competition contributes significantly to yield losses in cropping systems worldwide. The evolution of resistance in many weed species to continuously applied herbicides has presented the need for additional management methods. Allelopathy is a physiological process that some plant species possess that provide the plant with an advantage over its neighbors. Allelopathic crop varieties would be equipped with the ability to suppress the growth of surrounding competitors, thus reducing potential yield loss due to weed interference. This paper focuses on the construction and operation of a stair-step assay used for the screening of the allelopathic potential of a donor species (Oryza sativa) against a receiver weed species (Echinochloa crus-galli) in a greenhouse setting. The structure described in this paper serves as a stand for the plant samples and incorporates a timed watering system for the accumulation and distribution of allelochemicals. Allelochemicals produced by the plant roots are allowed to flow downward through a series of four pots separately into a collection tank and recycled back to the top plant through electric pumps. This method of screening provides an avenue for the allelochemicals from the donor plant to reach receiver plants without any resource competition, thus allowing quantitative measurement of the allelopathic potential of the selected donor plant. The allelopathic potential is measurable through the height reduction of the receiver plants. Preliminary screening data for the effectiveness of this method demonstrated height reduction in the receiver species, barnyardgrass (E. crus-galli), and thus the presence of allelopathic residues from the donor plant, weedy rice (Oryza sativa).


Assuntos
Alelopatia/fisiologia , Oryza/química , Raízes de Plantas/química
12.
Pest Manag Sci ; 74(6): 1404-1415, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29205860

RESUMO

BACKGROUND: Weed evolution from crops involves changes in key traits, but it is unclear how genetic and phenotypic variation contribute to weed diversification and productivity. Weedy rice is a conspecific weed of rice (Oryza sativa) worldwide. We used principal component analysis and hierarchical clustering to understand how morphologically and evolutionarily distinct US weedy rice populations persist in rice fields in different locations under contrasting management regimes. Further, we used a representative subset of 15 sequence-tagged site fragments of expressed genes from global Oryza to assess genome-wide sequence variation among populations. RESULTS: Crop hull color and crop-overlapping maturity dates plus awns, seed (panicle) shattering (> 50%), pigmented pericarp and stature variation (30.2% of total phenotypic variance) characterize genetically less diverse California weedy rice. By contrast, wild-like hull color, seed shattering (> 50%) and stature differences (55.8% of total phenotypic variance) typify genetically diverse weedy rice ecotypes in Arkansas. CONCLUSION: Recent de-domestication of weedy species - such as in California weedy rice - can involve trait combinations indistinguishable from the crop. This underscores the need for strict seed certification with genetic monitoring and proactive field inspection to prevent proliferation of weedy plant types. In established populations, tillage practice may affect weed diversity and persistence over time. © 2017 Society of Chemical Industry.


Assuntos
Evolução Biológica , Variação Genética , Oryza/anatomia & histologia , Oryza/genética , Fenótipo , Plantas Daninhas/anatomia & histologia , Plantas Daninhas/genética , Arkansas , California , Análise por Conglomerados , Evolução Molecular , Genes de Plantas/genética , Análise de Componente Principal , Controle de Plantas Daninhas/métodos
13.
Eur Arch Otorhinolaryngol ; 274(1): 399-404, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27395068

RESUMO

While conservative approaches for chronic sialoadenitis are in current use, the utility of intraductal injection therapy remains unclear. The purpose of this study is to provide evidence that substances delivered through intraductal injection of the salivary gland are able to be effectively distributed throughout the gland. Methylene blue dye (0.1 %) was injected intraductally into a porcine parotid gland (5 ml) of one group and the porcine submandibular gland (1 or 2 ml, n = 6 for each preparation) of another group. After the injection, the ductal systems were evaluated, sectioned, and observed microscopically. Color area analysis was performed on submandibular gland sections, and the infiltration ratio of the dye was calculated. The papillae of both Stensen's and Wharton's duct openings were easily identified with intraductally delivered methylene blue dye. The dye infiltration began from the central ductal region of the gland and could be easily observed to gradually disperse to the peripheral regions in each acinar. There were no statistically significant differences in infiltration ratios between anterior, midline, and posterior section of the submandibular gland. Also, there were no statistically significant differences in the ratios between 1 and 2 ml injections at all the three section positions. This study demonstrated that desired substances can be evenly delivered throughout the salivary gland through intraductal injections. The use of intraductal injections might serve as a potential therapeutic procedure in the management of salivary gland diseases.


Assuntos
Corantes/administração & dosagem , Azul de Metileno/administração & dosagem , Glândula Parótida , Glândula Submandibular , Animais , Sistemas de Liberação de Medicamentos , Injeções , Masculino , Ductos Salivares , Suínos
16.
Eur Arch Otorhinolaryngol ; 273(1): 189-95, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25567347

RESUMO

With damage to a duct or papilla after sialendoscopy, a stent may be necessary to prevent re-stenosis and for maintaining the salivary duct open after complete sialendoscopy. However factors affecting outcomes and complications after stent placement remain unclear. This study aimed to report preliminary experiences in salivary duct stent placement after sialendoscopy. Data from 35 procedures in 33 patients who received sialendoscopy with salivary duct stent placements at Mackay Memorial Hospital between October 2013 and June 2014 were recorded and compared for clinical data, as well as procedural techniques, findings, and outcomes. In the 35 stent placement procedures, the hypospadias silastic stent tubes were used in 27 and the Fr. 5 pediatric feeding tubes were used in the remaining eight. When the hypospadias silastic stent tubes were used for stenting, the stent obstruction and irritation rates were higher compared to those who used the Fr. 5 pediatric feeding tube (100 vs. 0 % and 67 vs. 33 %, respectively). None of the stents secured by a 5-0 nylon suture were complicated by dislocation but when the stents were secured by 6-0 nylon sutures, the dislocation rate went as high as 47.4 %. The duration needed for salivary duct stent placement might be potentially shortened to only 2 weeks. If a salivary duct stent is intended to be placed for a certain period before its scheduled removal, a suture strength equivalent or stronger than the 5-0 nylon suture should be considered for stent fixation.


Assuntos
Endoscopia , Complicações Pós-Operatórias , Implantação de Prótese , Cálculos dos Ductos Salivares , Ductos Salivares , Stents , Adulto , Idoso , Constrição Patológica/diagnóstico , Constrição Patológica/etiologia , Constrição Patológica/cirurgia , Endoscopia/efeitos adversos , Endoscopia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/cirurgia , Implantação de Prótese/instrumentação , Implantação de Prótese/métodos , Reoperação/métodos , Estudos Retrospectivos , Cálculos dos Ductos Salivares/diagnóstico , Cálculos dos Ductos Salivares/cirurgia , Ductos Salivares/patologia , Ductos Salivares/cirurgia , Taiwan
17.
PLoS One ; 10(7): e0132100, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230579

RESUMO

Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated japonica ssp. as indicated by the up/downregulation of various stress-responsive pathways identified from gene expression analysis. The cold-stress response is described in relation to the stress signaling pathways, showing complex adaptive mechanisms in different genotypes.


Assuntos
Resposta ao Choque Frio/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Oryza/crescimento & desenvolvimento , Álcool Desidrogenase/metabolismo , Temperatura Baixa , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Perfilação da Expressão Gênica , Germinação/genética , Glutamato Desidrogenase/biossíntese , Glutamato Desidrogenase/metabolismo , Oryza/classificação , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , alfa-Amilases/metabolismo
18.
Oncol Lett ; 8(6): 2787-2789, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25364466

RESUMO

A vestibular schwannoma, often termed an acoustic neuroma, is a type of benign primary intracranial tumor of the myelin-forming cells of the vestibulocochlear nerve. The typical clinical presentation often includes ipsilateral sensorineural hearing loss/deafness, vertigo and tinnitus. In the present study, the case of a young male patient who presented with recurrent unilateral facial palsy without hearing impairment is presented. The patient was diagnosed with vestibular schwannoma and received steroidal treatment with prednisolone for two weeks. The patient's facial weakness recovered three weeks following treatment, however, the tumor subsequently grew. The patient then underwent Gamma Knife radiosurgery with a margin dose of 13 Gy. Six months after the radiosurgery, the tumor was stable without progression, and the patient's facial nerve function and hearing remained intact.

20.
Plant Physiol ; 166(3): 1208-20, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122473

RESUMO

The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management.


Assuntos
Variação Genética , Resistência a Herbicidas , Herbicidas/farmacologia , Oryza/fisiologia , Produtos Agrícolas , Demografia , Evolução Molecular , Genótipo , Haplótipos , Oryza/genética , Fenótipo , Análise de Sequência de DNA , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...